Show simple item record

dc.contributor.authorRincón, M. 
dc.contributor.authorGarcía, F. 
dc.contributor.authorCortés, H.E.
dc.contributor.authorCarrasco, J.
dc.contributor.authorAkhmatskaya, E. 
dc.date2024-05-27en_US
dc.date.accessioned2022-05-31T13:17:21Z
dc.date.available2022-05-31T13:17:21Z
dc.date.issued2022-05-27
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1479
dc.description.abstractA better molecular-level understanding of Li+ diffusion through ceramic/polymer interfaces is key to designing high-performance composite solid-state electrolytes for all-solid-state batteries. By considering as a case study a composite electrolyte constituted by Li+ conductive Ga3+ doped-Li7La3Zr2O12 (LLZO) garnet fillers embedded within a poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl) imide polymer matrix (PEO(LiTFSI)), we investigate Li+ interfacial dynamics at conditions of high polymer confinement, with large filler particles in a fully amorphous polymer phase. Such confinement scenario is aimed to capture the conditions near the percolation threshold, at which conductivity enhancement is often reported. Using molecular dynamics simulations combined with the generalized shadow hybrid Monte Carlo method and umbrella sampling calculations, we explain why the hopping towards the polymer phase of the Li+ sitting on the LLZO surface is thermodynamically hindered while hopping of Li+ from the polymer to the LLZO is kinetically slowed-down by rigidified polymer near the interface. In addition, we demonstrate how the overlap of LLZO-bound polymer chains at high confinement leads to a decrease of Li+ diffusivity within the interstitial space. We put forward that these insights are relevant to interpreting the variation of ionic conductivity as a function of volume fraction and filler particle sizes also below the glass transition temperature of the polymer, at the typical operating conditions of lithium-ion batteries.en_US
dc.description.sponsorshipIkerbasque COVID-19en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectPolymer-ceramic electrolytesen_US
dc.subjectInterfacial lithium transporten_US
dc.subjectSolid-state lithium ion batteriesen_US
dc.subjectHybrid Monte Carloen_US
dc.subjectUmbrella samplingen_US
dc.subjectMolecular dynamicsen_US
dc.titleOn the interfacial lithium dynamics in Li7La3Zr2O12:poly(ethylene oxide) (LiTFSI) composite polymer-ceramic solid electrolytes under strong polymer phase confinementen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1016/j.jcis.2022.05.069en_US
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0021979722008530?dgcid=authoren_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDES/2PE/PID2019-104927GB-C22en_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.relation.projectIDEUS/ELKARTEKen_US
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleJournal of Colloid and Interface Scienceen_US
dc.volume.number623en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España