Show simple item record

dc.contributor.authorCiampa, G.
dc.date.accessioned2022-07-06T08:11:40Z
dc.date.available2022-07-06T08:11:40Z
dc.date.issued2022-01-01
dc.identifier.issn15396746
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1486
dc.description.abstractIn these notes we discuss the conservation of the energy for weak solutions of the twodimensional incompressible Euler equations. Weak solutions with vorticity in (Formula presented) with p > 3/2 are always conservative, while for less integrable vorticity the conservation of the energy may depend on the approximation method used to construct the solution. Here we prove that the canonical approximations introduced by DiPerna and Majda provide conservative solutions when the initial vorticity is in the class L(logL)α with α > 1/2.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subject2D Euler equationsen_US
dc.subjectconservation of energyen_US
dc.subjectvanishing viscosityen_US
dc.subjectvortex methodsen_US
dc.titleENERGY CONSERVATION FOR 2D EULER WITH VORTICITY IN L(log L)α*en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.4310/CMS.2022.v20.n3.a10en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleCommunications in Mathematical Sciencesen_US
dc.volume.number20en_US
dc.issue.number3en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España