• English
    • Basque
    • español
  • English 
    • English
    • Basque
    • español
  • Login
Search 
  •   BIRD Home
  • Mathematical Modelling with Multidisciplinary Applications (M3A)
  • Modelling and Simulation in Life and Materials Sciences
  • Search
  •   BIRD Home
  • Mathematical Modelling with Multidisciplinary Applications (M3A)
  • Modelling and Simulation in Life and Materials Sciences
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filtros

Use filtros para refinar sus resultados.

Now showing items 1-9 of 9

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Opportunities at the Intersection of Synthetic Biology, Machine Learning, and Automation 

Carbonell, P.; Radivojevic, T.; Garcia-Martin, H. (2019-07)
Our inability to predict the behavior of biological systems severely hampers progress in bioengineering and biomedical applications. We cannot predict the effect of genotype changes on phenotype, nor extrapolate the ...
Thumbnail

A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630 

Roell, G.W.; Carr, R.R.; Campbell, T.; Shang, Z.; Henson, W.R.; Czajka, J.J.; Garcia-Martin, H.; Zhang, F.; Foston, M.; Dantas, G.; Moon, T.S.; Tang, Y.J. (2019-06)
Rhodococcus opacus PD630 metabolizes aromatic substrates and naturally produces branched-chain lipids, which are advantageous traits for lignin valorization. To provide insights into its lignocellulose hydrolysate utilization, ...
Thumbnail

Lessons from Two Design–Build–Test–Learn Cycles of Dodecanol Production in Escherichia coli Aided by Machine Learning 

Opgenorth, P.; Costello, Z.; Okada, T.; Goyal, G.; Chen, Y.; Gin, J.; Benites, V.; de Raad, M.; Northen, T.R.; Deng, K.; Deutsch, S.; Baidoo, E.E.K.; Petzold, C.J.; Hillson, N.J.; Garcia-Martin, H.; Beller, H.R. (2019-01-01)
The Design–Build–Test–Learn (DBTL) cycle, facilitated by exponentially improving capabilities in synthetic biology, is an increasingly adopted metabolic engineering framework that represents a more systematic and efficient ...
Thumbnail

Machine learning framework for assessment of microbial factory performance 

Oyetunde, T.; Liu, D.; Garcia-Martin, H.; Tang, Y.J. (2019-01-01)
Metabolic models can estimate intrinsic product yields for microbial factories, but such frameworks struggle to predict cell performance (including product titer or rate) under suboptimal metabolism and complex bioprocess ...
Thumbnail

Common principles and best practices for engineering microbiomes 

Lawson, C.E.; Harcombe, W.R.; Hatzenpichler, R.; Noguera, D.R.; McMahon, K.D.; Lindemann, S.R.; Loffler, F.E.; O'Malley, M.A.; Garcia-Martin, H.; Pfleger, B.F.; Raskin, L.; Venturelli, O.S.; Weissbrodt, D.G. (2019)
Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue hat structuring research ...
Thumbnail

A Machine Learning Approach to Predict Metabolic Pathway Dynamics from Time Series Multiomics Data 

Costello, Z.; Garcia-Martin, H. (2018-05)
New synthetic biology capabilities hold the promise of dramatically improving our ability to engineer biological systems. However, a fundamental hurdle in realizing this potential is our inability to accurately predict ...
Thumbnail

The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization 

Morrell, W.C.; Birkel, G.W.; Forrer, M.; Lopez, T.; Backman, T.W.H.; Dussault, M.; Petzold, C.J.; Baidoo, E.E.K.; Costello, Z.; Ando, D.; Alonso-Gutierrez, J.; George, K.W.; Mukhopadhyay, A.; Vaino, I.; Keasling, J.D.; Adams, P.D.; Hillson, N.J.; Garcia-Martin, H. (2017-09-30)
Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large ...
Thumbnail

Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism 

Shymansky, C.M.; Wang, G.; Baidoo, E.E.K.; Gin, J.; Apel, A.R.; Mukhopadhyay, A.; Garcia-Martin, H.; Keasling, J.D. (2017-05-31)
13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference ...
Thumbnail

The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism 

Birkel, G.W.; Ghosh, A.; Kumar, V.S.; Weaver, D.; Ando, D.; Backman, T.W.H.; Arkin, A.P.; Keasling, J.D.; Garcia-Martin, H. (2017-01-01)
Modeling of microbial metabolism is a topic of growing importance in biotechnology. Mathematical modeling helps provide a mechanistic understanding for the studied process, separating the main drivers from the circumstantial ...

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
 

 

Browse

All of BIRDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Descubre

Author
Garcia-Martin, H. (9)
Baidoo, E.E.K. (3)Costello, Z. (3)Keasling, J.D. (3)Ando, D. (2)Backman, T.W.H. (2)Birkel, G.W. (2)Gin, J. (2)Hillson, N.J. (2)Mukhopadhyay, A. (2)... másSubject-omics data (2)data mining (1)data standards (1)database (1)Flux analysis (1)flux analysis (1)Metabolic Flux Analysis (1)Predictive biology (1)synthetic biology (1)... másFecha2019 (5)2018 (1)2017 (3)

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback