dc.contributor.author | Ma, L. | |
dc.contributor.author | Smirnov, I. | |
dc.date.accessioned | 2022-11-07T16:15:21Z | |
dc.date.available | 2022-11-07T16:15:21Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/1533 | |
dc.description.abstract | Let (R,m) be a Noetherian local ring, and let M be a finitely generated R-module of dimension d. We prove that the set [Formula presented] is bounded below by 1/d!e(R‾) where R‾=R/Ann(M). Moreover, when Mˆ is equidimensional, this set is bounded above by a finite constant depending only on M. The lower bound extends a classical inequality of Lech, and the upper bound answers a question of Stückrad–Vogel in the affirmative. As an application, we obtain results on uniform behavior of the lengths of Koszul homology module | en_US |
dc.description.sponsorship | La Caixa Junior Leader Postdoctoral Fellowship “LCF/BQ/PI21/11830033”.
PID2021-125052NA-I00 | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | Uniform Lech's inequality | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | https://doi.org/10.1090/proc/16304 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Proceedings of the American Mathematical Society | en_US |