Show simple item record

dc.contributor.authorCortés, H.E.
dc.contributor.authorScherlis, D. A.
dc.contributor.authorFactorovich, M. H.
dc.description.abstractIt is well-known that the thermodynamic, kinetic and structural properties of fluids, and in particular of water and its solutions, can be drastically affected in nanospaces. A possible consequence of nanoscale confinement of a solution is the partial segregation of its components. Thereby, confinement in nanoporous materials (NPM) has been proposed as a means for the separation of mixtures. In fact, separation science can take great advantage of NPM due to the tunability of their properties as a function of nanostructure, morphology, pore size, and surface chemistry. Alcohol-water mixtures are in this context among the most relevant systems. However, a quantitative thermodynamic description allowing for the prediction of the segregation capabilities as a function of the material-solution characteristics is missing. In the present study we attempt to fill this vacancy, by contributing a thermodynamic treatment for the calculation of the partition coefficient in confinement. Combining the multilayer adsorption model for binary mixtures with the Young equation, we conclude that the liquid-vapor surface tension and the contact angle of the pure substances can be used to predict the separation ability of a particular material for a given mixture to a semiquantitative extent. Moreover, we develop a Kelvin-type equation that relates the partition coefficient to the radius of the pore, the contact angle, and the liquid-vapor surface tensions of the constituents. To assess the validity of our thermodynamic formulation, coarse grained molecular dynamics simulations were performed on models of alcohol-water mixtures confined in cylindrical pores. To this end, a coarse-grained amphiphilic molecule was parametrized to be used in conjunction with the mW potential for water. This amphiphilic model reproduces some of the properties of methanol such as enthalpy of vaporization and liquid-vapor surface tension, and the minimum of the excess enthalpy for the aqueous solution. The partition coefficient turns out to be highly dependent on the molar fraction, on the interaction between the components and the confining matrix, and on the radius of the pore. A remarkable agreement between the theory and the simulations is found for pores of radius larger than 15 Å.en_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.titlePartition Constant of Binary Mixtures for the Equilibrium between a Bulk and a Confined Phaseen_US
dc.journal.titleJournal of Physical Chemistry Ben_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España