Effects of noise on leaky integrate-and-fire neuron models for neuromorphic computing applications
Abstract
Artificial neural networks (ANNs) have been extensively used
for the description of problems arising from biological systems and for
constructing neuromorphic computing models. The third generation of
ANNs, namely, spiking neural networks (SNNs), inspired by biological
neurons enable a more realistic mimicry of the human brain. A large
class of the problems from these domains is characterized by the necessity to deal with the combination of neurons, spikes and synapses via
integrate-and-fire neuron models. Motivated by important applications
of the integrate-and-fire of neurons in neuromorphic computing for biomedical studies, the main focus of the present work is on the analysis of
the effects of additive and multiplicative types of random input currents
together with a random refractory period on a leaky integrate-and-fire
(LIF) synaptic conductance neuron model. Our analysis is carried out
via Langevin stochastic dynamics in a numerical setting describing a
cell membrane potential. We provide the details of the model, as well
as representative numerical examples, and discuss the effects of noise
on the time evolution of the membrane potential as well as the spiking
activities of neurons in the LIF synaptic conductance model scrutinized
here. Furthermore, our numerical results demonstrate that the presence
of a random refractory period in the LIF synaptic conductance system
may substantially influence an increased irregularity of spike trains of
the output neuron.