• English
    • Basque
    • español
  • English 
    • English
    • Basque
    • español
  • Login
Search 
  •   BIRD Home
  • Mathematical Physics (MP)
  • Singularity Theory and Algebraic Geometry
  • Search
  •   BIRD Home
  • Mathematical Physics (MP)
  • Singularity Theory and Algebraic Geometry
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filtros

Use filtros para refinar sus resultados.

Now showing items 1-2 of 2

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Némethi’s division algorithm for zeta-functions of plumbed 3-manifolds 

László, T.; Szilágyi, Zs. (2018-08-27)
A polynomial counterpart of the Seiberg-Witten invariant associated with a negative definite plumbing 3-manifold has been proposed by earlier work of the authors. It is provided by a special decomposition of the zeta-function ...
Thumbnail

Non-normal affine monoids, modules and Poincaré series of plumbed 3-manifolds 

László, T.; Szilágyi, Zs. (2017-05-18)
We construct a non-normal affine monoid together with its modules associated with a negative definite plumbed 3-manifold M. In terms of their structure, we describe the $H_1(M,\mathbb{Z})$-equivariant parts of the topological ...

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
 

 

Browse

All of BIRDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Descubre

Author
László, T. (2)
Szilágyi, Zs. (2)
Subject
polynomial part (2)
division algorithm (1)links of singularity (1)non-normal affine monoid (1)normal surface singularity (1)nromal surface singularities (1)plumbed 3-manifold (1)plumbing graph (1)Poincaré series (1)rational homology sphere (1)... másFecha2018 (1)2017 (1)

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback