• English
    • Basque
    • español
  • English 
    • English
    • Basque
    • español
  • Login
Search 
  •   BIRD Home
  • Mathematical Physics (MP)
  • Singularity Theory and Algebraic Geometry
  • Search
  •   BIRD Home
  • Mathematical Physics (MP)
  • Singularity Theory and Algebraic Geometry
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filtros

Use filtros para refinar sus resultados.

Now showing items 1-9 of 9

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Local Topological Obstruction For Divisors 

Biswas, I.; Dan, A. (2020)
Given a smooth, projective variety $X$ and an effective divisor $D\,\subseteq\, X$, it is well-known that the (topological) obstruction to the deformation of the fundamental class of $D$ as a Hodge class, lies in ...
Thumbnail

Neron models of intermediate Jacobians associated to moduli spaces 

Dan, A.; Kaur, I. (2019-12-01)
Let $\pi_1:\mathcal{X} \to \Delta$ be a flat family of smooth, projective curves of genus $g \ge 2$, degenerating to an irreducible nodal curve $X_0$ with exactly one node. Fix an invertible sheaf $\mathcal{L}$ on $\mathcal{X}$ ...
Thumbnail

Examples of varieties with index one on C1 fields 

Dan, A.; Kaur, I. (2019-04-16)
Let K be the fraction field of a Henselian discrete valuation ring with algebraically closed residue field k. In this article we give a sufficient criterion for a projective variety over such a field to have index 1.
Thumbnail

On a conjecture of harris 

Dan, A. (2019)
For d ≥ 4, the Noether-Lefschetz locus NLd parametrizes smooth, degree d sur- faces in P3 with Picard number at least 2. A conjecture of Harris states that there are only finitely many irreducible components of the ...
Thumbnail

Criterion for logarithmic connections with prescribed residues 

Biswas, I.; Dan, A.; Paul, A. (2017-04-01)
A theorem of Weil and Atiyah says that a holomorphic vector bundle $E$ on a compact Riemann surface $X$ admits a holomorphic connection if and only if the degree of every direct summand of $E$ is zero. Fix a finite subset ...
Thumbnail

Singularities of the Hilbert scheme of effective divisors 

Dan, A. (2017-01-10)
In this article, we study the Hilbert scheme of effective divisors in smooth hypersurfaces in $\mathbb{P}^3$, a topic not extensively studied. We prove that there exists such effective divisors $D$ satisfying the property: ...
Thumbnail

A specialization property of index 

Dan, A.; Kaur, I. (2017-01-10)
In [Kol13] Kollár defined $i$-th index of a proper scheme over a field. In this note we study how index behaves under specialization, in any characteristic.
Thumbnail

A note on the determinant map 

Dan, A.; Kaur, I. (2017-01-10)
Classically, there exists a determinant map from the moduli space of semi-stable sheaves on a smooth, projective variety to the Picard scheme. Unfortunately, if the underlying variety is singular, then such a map does not ...
Thumbnail

Logarithmic connections on principal bundles over a Riemann surface 

Biswas, I.; Dan, A.; Paul, A.; Saha, A. (2017)
Let $E_G$ be a holomorphic principal $G$--bundle on a compact connected Riemann surface $X$, where $G$ is a connected reductive complex affine algebraic group. Fix a finite subset $D\, \subset\, X$, and for each $x\,\in\, ...

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
 

 

Browse

All of BIRDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Descubre

Author
Dan, A. (9)
Kaur, I. (4)Biswas, I. (3)Paul, A. (2)Saha, A. (1)SubjectIndex of varieties (2)Logarithmic connection (2)Noether-Lefschetz locus (2)residue (2)automorphism (1)Brauer group (1)C1 fields (1)deformation of linear systems (1)Determinant map (1)flag Hilbert schemes (1)... másFecha2020 (1)2019 (3)2017 (5)

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback