Show simple item record

dc.contributor.authorBach, V.
dc.contributor.authorBru, J.-B. 
dc.date.accessioned2016-06-13T13:32:50Z
dc.date.available2016-06-13T13:32:50Z
dc.date.issued2016-01-01
dc.identifier.issn0065-9266
dc.identifier.urihttp://hdl.handle.net/20.500.11824/185
dc.description.abstractWe study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. We specify assumptions that ensure the global existence of its solutions and allow us to derive its asymptotics at temporal infinity. We demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocket-Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectBrocket-Wegner flow
dc.subjectDouble bracket flow
dc.subjectEvolution equations
dc.subjectFlow equations for operators
dc.subjectQuadratic operators
dc.titleDiagonalizing quadratic bosonic operators by non-autonomous flow equations volker bachen_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.identifier.doi10.1090/memo/1138
dc.relation.publisherversionhttp://www.ams.org/books/memo/1138/
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleMemoirs of the American Mathematical Societyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España