Show simple item record

dc.contributor.authorLu X.
dc.contributor.authorTu Z.
dc.contributor.authorLv X.
dc.date.accessioned2016-06-13T13:33:47Z
dc.date.available2016-06-13T13:33:47Z
dc.date.issued2014-12-31
dc.identifier.issn0362-546X
dc.identifier.urihttp://hdl.handle.net/20.500.11824/200
dc.description.abstractIn this paper, we address the exact controllability problem for the hyperbolic magnetic Schrödinger equation, which plays an important role in the research of electromagnetics. Typical techniques, such as Hamiltonian induced Hilbert spaces and pseudodifferential operators are introduced. By choosing an appropriate multiplier, we proved the observability inequality with sharp constants. In particular, a genuine compactness-uniqueness argument is applied to obtain the minimal time. In the final analysis, a suitable boundary control is constructed by the systematic Hilbert Uniqueness Method introduced by J. L. Lions. Compared with the micro-local discussion in Bardos et al. (1992), we do not require the coefficients belong to C∞. Actually, C1 is already sufficient for the vector potential of the hyperbolic electromagnetic equation.
dc.formatapplication/pdf
dc.languageeng
dc.publisherNonlinear Analysis, Theory, Methods and Applications
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/246775
dc.relationES/6PN/MTM2011-29306-C02-01
dc.relationES/6PN/MTM2008-03541
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subjectObservability
dc.subjectCompactness-uniqueness argument
dc.subjectEnergy conservation law
dc.subjectHamiltonian operators
dc.subjectHilbert uniqueness method
dc.subjectObservability inequality
dc.subjectPseudo-differential operator
dc.subjectTrace theorem
dc.subjectUnique continuation
dc.subjectMathematical operators
dc.titleOn the exact controllability of hyperbolic magnetic Schrödinger equations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.identifier.doi10.1016/j.na.2014.06.006
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0362546X1400203X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess