Show simple item record

dc.contributor.authorBourgeron, T.
dc.contributor.authorDoumic, M.
dc.contributor.authorEscobedo, M.
dc.date.accessioned2016-06-13T13:33:47Z
dc.date.available2016-06-13T13:33:47Z
dc.date.issued2014-12-31
dc.identifier.issn0266-5611
dc.identifier.urihttp://hdl.handle.net/20.500.11824/205
dc.description.abstractWe consider the growth-fragmentation equation and we address the problem of estimating the division rate from the stable size distribution of the population, which is easily measured, but non-smooth. We propose a method based on the Mellin transform for growth-fragmentation equations with self-similar kernels. We build a sequence of functions which converges to the density of the population in division, simultaneously in several weighted L2 spaces, as the measurement error goes to 0. This improves the previous results for self-similar kernels and allows us to understand the partial results for general fragmentation kernels. Numerical simulations confirm the theoretical results. Moreover, our numerical method is tested on real biological data, arising from a bacteria growth and fission experiment.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleEstimating the division rate of the growth-fragmentation equation with a self-similar kernel
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1088/0266-5611/30/2/025007
dc.relation.publisherversionhttp://iopscience.iop.org/journal/0266-5611/labtalk/article/56254
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleInverse Problemsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España