• English
    • Basque
    • español
  • English 
    • English
    • Basque
    • español
  • Login
Search 
  •   BIRD Home
  • Past Topics (PT)
  • Former Research Lines
  • Search
  •   BIRD Home
  • Past Topics (PT)
  • Former Research Lines
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filtros

Use filtros para refinar sus resultados.

Now showing items 1-6 of 6

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Optimal Shape and Location of Sensors for Parabolic Equations with Random Initial Data 

Privat, Y.; Trélat, E.; Zuazua, E. (2015-12-31)
In this article, we consider parabolic equations on a bounded open connected subset Rn. We model and investigate the problem of optimal shape and location of the observation domain having a prescribed measure. This problem ...
Thumbnail

Complexity and regularity of maximal energy domains for the wave equation with fixed initial data 

Privat, Y.; Trélat, E.; Zuazua, E. (2015-12-31)
We consider the homogeneous wave equation on a bounded open connected subset Ω of IRn. Some initial data being specified, we consider the problem of determining a measurable subset ω of Ω maximizing the L2-norm of the ...
Thumbnail

Optimal sensor location for wave and Schrödinger equations 

Privat, Y.; Trélat, E.; Zuazua, E. (2014-12-31)
This paper summarizes the research we have carried out recently on the problem of the optimal location of sensors and actuators for wave equa- tions, which has been the object of the talk of the third author at the Hyp2012 ...
Thumbnail

Optimal shape and location of sensors or actuators in PDE models 

Privat, Y.; Trélat, E.; Zuazua, E. (2014-12-31)
We investigate the problem of optimizing the shape and location of sensors and actuators for evolution systems driven by distributed parameter systems or partial differential equations (PDE). We consider wave, Schrödinger ...
Thumbnail

Optimal location of controllers for the one-dimensional wave equation 

Privat, Y.; Trélat, E.; Zuazua, E. (2013-12-31)
In this paper, we consider the homogeneous one-dimensional wave equation defined on (0,π). For every subset ωâŠ[0,π] of positive measure, every T≥2π, and all initial data, there exists a unique control of minimal norm in ...
Thumbnail

Optimal Observation of the One-dimensional Wave Equation 

Privat, Y.; Trélat, E.; Zuazua, E. (2013-12-31)
In this paper, we consider the homogeneous one-dimensional wave equation on [0,π] with Dirichlet boundary conditions, and observe its solutions on a subset ω of [0,π]. Let L∈(0,1). We investigate the problem of maximizing ...

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
 

 

Browse

All of BIRDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Descubre

Author
Privat, Y. (6)
Trélat, E. (6)
Zuazua, E. (6)
SubjectWave equation (3)Observability (2)Actuators (1)Calculus of variations. (1)Cantor set (1)Distributed parameter systems (1)Evolution systems (1)Exact controllability (1)Fourier series (1)Harmonic analysis (1)... másFecha2015 (2)2014 (2)2013 (2)

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback