Gradient-based optimization techniques for the design of static controllers for Markov jump linear systems with unobservable modes
Abstract
The paper formulates the static control problem of Markov jump linear systems, assuming that the controller does not have access to the jump variable. We derive the expression of the gradient for the cost motivated by the evaluation of 10 gradient-based optimization techniques. The numerical efficiency of these techniques is verified by using the data obtained from practical experiments. The corresponding solution is used to design a scheme to control the velocity of a real-time DC motor device subject to abrupt power failures.