Show simple item record

dc.contributor.authorEscobedo, M.
dc.contributor.authorTran, M.-B.
dc.dateinfo:eu-repo/date/embargoEnd/2016-09-01
dc.date.accessioned2016-06-13T13:33:50Z
dc.date.available2016-06-13T13:33:50Z
dc.date.issued2015-09-01
dc.identifier.issn1937-5093
dc.identifier.urihttp://hdl.handle.net/20.500.11824/245
dc.description.abstractWe consider an approximation of the linearised equation of the homogeneous Boltzmann equation that describes the distribution of quasipar-ticles in a dilute gas of bosons at low temperature. The corresponding collision frequency is neither bounded from below nor from above. We prove the ex-istence and uniqueness of solutions satisfying the conservation of energy. We show that these solutions converge to the corresponding stationary state, at an algebraic rate as time tends to infinity.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectAlgebraic decay
dc.subjectQuantum boltzmann equation
dc.subjectRate of convergence to equilibrium
dc.titleConvergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.3934/krm.2015.8.493
dc.relation.publisherversionhttp://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11323
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleKinetic and Related Modelsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España