Output feedback of Markov jump linear systems with no mode observation: An automotive throttle application
Abstract
Summary The note presents an output feedback control strategy for Markov jump linear systems with no mode observation. Based on minimizing a finite-time quadratic cost, we derive an algorithm that generates output feedback gains that satisfy a necessary optimality condition. These gains can be computed off-line relying only on the initial condition of the system. This result expands a previous one from the literature that considered state-feedback only. To illustrate the usefulness of the approach, real-time laboratory experiments were performed to control an automotive electronic throttle valve subject to Markov-driven voltage fluctuations.