Show simple item record

dc.contributor.authorLecaros, R.
dc.contributor.authorZuazua, E.
dc.date.accessioned2016-06-13T13:33:51Z
dc.date.available2016-06-13T13:33:51Z
dc.date.issued2016-01-01
dc.identifier.issn0025-5718
dc.identifier.urihttp://hdl.handle.net/20.500.11824/262
dc.description.abstractWe analyze a model optimal control problem for a 2D scalar conservation law-the so-called inverse design problem-with the goal being to identify the initial datum leading to a given final time configuration. The presence of shocks is an impediment for classical methods, based on linearization, to be directly applied. We develop an alternating descent method that exploits the generalized linearization that takes into account both the sensitivity of the shock location and of the smooth components of solutions. A numerical implementation is proposed using splitting and finite differences. The descent method we propose is of alternating nature and combines variations taking account of the shock location and those that take care of the smooth components of the solution. The efficiency of the method is illustrated by numerical experiments.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleControl of 2D scalar conservation laws in the presence of shocks
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1090/mcom/3015
dc.relation.publisherversionhttp://www.ams.org/journals/mcom/2016-85-299/S0025-5718-2015-03015-4/
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleMathematics of Computationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España