dc.contributor.author | Biccari, U. | |
dc.contributor.author | Zuazua, E. | |
dc.date.accessioned | 2016-06-13T13:33:51Z | |
dc.date.available | 2016-06-13T13:33:51Z | |
dc.date.issued | 2016-01-01 | |
dc.identifier.issn | 0022-0396 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/263 | |
dc.description.abstract | This article is devoted to the analysis of control properties for a heat equation with a singular potential μ/δ2, defined on a bounded C2 domain Ω⊂RN, where δ is the distance to the boundary function. More precisely, we show that for any μ≤1/4 the system is exactly null controllable using a distributed control located in any open subset of Ω, while for μ>1/4 there is no way of preventing the solutions of the equation from blowing-up. The result is obtained applying a new Carleman estimate. | |
dc.format | application/pdf | |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | Null controllability for a heat equation with a singular inverse-square potential involving the distance to the boundary function | |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1016/j.jde.2016.05.019 | |
dc.relation.publisherversion | http://www.sciencedirect.com/science/article/pii/S0022039616300985 | |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | en_US |
dc.journal.title | Journal of Differential Equations | en_US |