Show simple item record

dc.contributor.authorOmbrosi, S.
dc.contributor.authorPérez, C.
dc.contributor.authorRecchi, J.
dc.date.accessioned2016-07-05T13:57:20Z
dc.date.available2016-07-05T13:57:20Z
dc.date.issued2016-06-30
dc.identifier.issn0022-2518
dc.identifier.urihttp://hdl.handle.net/20.500.11824/295
dc.description.abstractWe improve on several mixed weak type inequalities both for the Hardy-Littlewood maximal function and for Calderón-Zygmund operators. These type of inequalities were considered by Muckenhoupt and Wheeden and later on by Sawyer estimating the $L^{1,\infty}(uv)$ norm of $v^{−1}T(fv)$ for special cases. The emphasis is made in proving new and more precise quantitative estimates involving the $A_p$ or $A_{\infty}$ constants of the weights involved.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectCalderón-Zygmund operatorsen_US
dc.subjectMaximal operatorsen_US
dc.subjectWeighted estimatesen_US
dc.titleQuantitative weighted mixed weak-type inequalities for classical operatorsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1512/iumj.2016.65.5773
dc.relation.publisherversionhttp://www.iumj.indiana.edu/IUMJ/fulltext.php?artid=5773&year=2016&volume=65
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDES/1PE/MTM2014-53850-Pen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleIndiana University Mathematics Journalen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España