Browsing Harmonic Analysis by Subject "Calderón-Zygmund operators"
Now showing items 1-3 of 3
-
A note on the off-diagonal Muckenhoupt-Wheeden conjecture
(2016-07-01)We obtain the off-diagonal Muckenhoupt-Wheeden conjecture for Calderón-Zygmund operators. Namely, given $1 < p < q < \infty$ and a pair of weights $(u; v)$, if the Hardy-Littlewood maximal function satisfies the following ... -
Quantitative weighted mixed weak-type inequalities for classical operators
(2016-06-30)We improve on several mixed weak type inequalities both for the Hardy-Littlewood maximal function and for Calderón-Zygmund operators. These type of inequalities were considered by Muckenhoupt and Wheeden and later on by ... -
Vector-valued operators, optimal weighted estimates and the $C_p$ condition
(2018-09)In this paper some new results concerning the $C_p$ classes introduced by Muckenhoupt and later extended by Sawyer, are provided. In particular we extend the result to the full range expected $p>0$, to the weak norm, to ...