Browsing Harmonic Analysis by Subject "commutators"
Now showing items 1-4 of 4
-
$A_1$ theory of weights for rough homogeneous singular integrals and commutators
(2019)Quantitative $A_1-A_\infty$ estimates for rough homogeneous singular integrals $T_{\Omega}$ and commutators of $\BMO$ symbols and $T_{\Omega}$ are obtained. In particular the following estimates are proved: \[ \|T_\Omega ... -
Bilinear Calderón--Zygmund theory on product spaces
(2019-10)We develop a wide general theory of bilinear bi-parameter singular integrals $T$. This includes general Calder\'on--Zygmund type principles in the bilinear bi-parameter setting: easier bounds, like estimates in the Banach ... -
New bounds for bilinear Calderón-Zygmund operators and applications
(2016-11-25)In this work we extend Lacey’s domination theorem to prove the pointwise control of bilinear Calderón–Zygmund operators with Dini–continuous kernel by sparse operators. The precise bounds are carefully tracked following ... -
Vector-valued operators, optimal weighted estimates and the $C_p$ condition
(2018-09)In this paper some new results concerning the $C_p$ classes introduced by Muckenhoupt and later extended by Sawyer, are provided. In particular we extend the result to the full range expected $p>0$, to the weak norm, to ...