Search
Now showing items 1-4 of 4
Vector-valued operators, optimal weighted estimates and the $C_p$ condition
(2018-09)
In this paper some new results concerning the $C_p$ classes introduced by Muckenhoupt and later extended by Sawyer, are provided. In particular we extend the result to the full range expected $p>0$, to the weak norm, to ...
Proof of an extension of E. Sawyer's conjecture about weighted mixed weak-type estimates
(2018-09)
We show that if $v\in A_\infty$ and $u\in A_1$, then there is a constant $c$ depending on the $A_1$ constant of $u$ and the $A_{\infty}$ constant of $v$ such that
$$\Big\|\frac{ T(fv)} {v}\Big\|_{L^{1,\infty}(uv)}\le c\, ...
Weighted norm inequalities for rough singular integral operators
(2018-08-17)
In this paper we provide weighted estimates for rough operators, including rough homogeneous singular integrals $T_\Omega$ with $\Omega\in L^\infty(\mathbb{S}^{n-1})$ and the Bochner--Riesz multiplier at the critical index ...
Bilinear representation theorem
(2018-01-01)
We represent a general bilinear Calderón--Zygmund operator as a sum of simple dyadic operators. The appearing dyadic operators
also admit a simple proof of a sparse bound. In particular, the representation implies a so ...