$A_1$ theory of weights for rough homogeneous singular integrals and commutators
Abstract
Quantitative $A_1-A_\infty$ estimates for rough homogeneous singular integrals $T_{\Omega}$ and commutators of $BMO$ symbols and $T_{\Omega}$ are obtained. In particular the following estimates are proved:
\[
\|T_\Omega \|_{L^p(w)}\le c_{n,p}\|\Omega\|_{L^\infty} [w]_{A_1}^{\frac{1}{p}}\,[w]_{A_{\infty}}^{1+\frac{1}{p'}}\|f\|_{L^p(w)}
\]
and
\[
\| [b,T_{\Omega}]f\| _{L^{p}(w)}\leq c_{n,p}\|b\|_{BMO}\|\Omega\|_{L^{\infty}} [w]_{A_1}^{\frac{1}{p}}[w]_{A_{\infty}}^{2+\frac{1}{p'}}\|f\|_{L^{p}\left(w\right)},
\]
for $1<p<\infty$ and $1/p+1/p'=1$.