Show simple item record

dc.contributor.authorGarcía, A.
dc.contributor.authorZhang, G.
dc.date.accessioned2016-10-05T20:01:24Z
dc.date.available2016-10-05T20:01:24Z
dc.date.issued2016-10-01
dc.identifier.urihttp://hdl.handle.net/20.500.11824/311
dc.description.abstractIn this paper, following Nachman's idea [14] and Haberman and Tataru's idea [9], we reconstruct $C^1$ conductivity $\gamma$ or Lipchitz conductivity $\gamma$ with small enough value of $|\nabla log\gamma|$ in a Lipschitz domain $\Omega$ from the Dirichlet-to-Neumann map $\Lambda_{\gamma}$. In the appendix the authors and R. M. Brown recover the gradient of a $C^1$-conductivity at the boundary of a Lipschitz domain from the Dirichlet-to-Neumann map $\Lambda_{\gamma}$.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectInverse conductivity problemen_US
dc.subjectDirichlet-to-Neumann mapen_US
dc.subjectCalderón problemen_US
dc.subjectBoundary integral equationen_US
dc.subjectBourgain's spaceen_US
dc.titleReconstruction from boundary measurements for less regular conductivitiesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.arxivarXiv:1212.0727
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDES/1PE/MTM2014-53850-Pen_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España