dc.contributor.author | García, A. | |
dc.contributor.author | Zhang, G. | |
dc.date.accessioned | 2016-10-05T20:01:24Z | |
dc.date.available | 2016-10-05T20:01:24Z | |
dc.date.issued | 2016-10-01 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/311 | |
dc.description.abstract | In this paper, following Nachman's idea [14] and Haberman and Tataru's idea [9], we reconstruct $C^1$ conductivity $\gamma$
or Lipchitz conductivity $\gamma$ with small enough value of $|\nabla log\gamma|$ in a Lipschitz domain $\Omega$ from the Dirichlet-to-Neumann
map $\Lambda_{\gamma}$. In the appendix the authors and R. M. Brown recover the gradient of a $C^1$-conductivity at the boundary of a Lipschitz domain from the Dirichlet-to-Neumann
map $\Lambda_{\gamma}$. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Inverse conductivity problem | en_US |
dc.subject | Dirichlet-to-Neumann map | en_US |
dc.subject | Calderón problem | en_US |
dc.subject | Boundary integral equation | en_US |
dc.subject | Bourgain's space | en_US |
dc.title | Reconstruction from boundary measurements for less regular conductivities | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.arxiv | arXiv:1212.0727 | |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | ES/1PE/MTM2014-53850-P | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |