dc.contributor.author | Kamenskii, M. | |
dc.contributor.author | Makarenkov, O. | |
dc.date.accessioned | 2016-12-14T16:52:26Z | |
dc.date.available | 2016-12-14T16:52:26Z | |
dc.date.issued | 2016-12-01 | |
dc.identifier.issn | 1877-0533 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/335 | |
dc.description.abstract | If $x_0$ is an equilibrium of an autonomous differential equation $\dot x=f(x)$ and $\det \|f'(x_0)\|\not=0$, then $x_0$ persists under autonomous perturbations and $x_0$ transforms into a $T$-periodic solution under non-autonomous $T$-periodic perturbations. In this paper we discover a similar structural stability for Moreau sweeping processes of the form $-\dot u\in N_B(u)+f_0(u),$ $u\in\mathbb{R}^2,$ i. e. we consider the simplest case where the derivative is taken with respect to the Lebesgue measure and where the convex set $B$ of the reduced system is a non-moving unit ball of $\mathbb{R}^2.$ We show that an equilibrium $\|u_0\|=1$ persists under periodic perturbations, if the projection $\overline{f}:\partial B\to\mathbb{R}^2$ of $f_0$ on the tangent to the boundary $\partial B$ is nonsingular at $u_0$. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Sweeping process | en_US |
dc.subject | Perturbation theory | en_US |
dc.subject | Continuation principle | en_US |
dc.subject | Periodic solution | en_US |
dc.title | On the response of autonomous sweeping processes to periodic perturbations | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1007/s11228-015-0348-1 | |
dc.relation.publisherversion | http://link.springer.com/article/10.1007/s11228-015-0348-1 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Set-Valued and Variational Analysis | en_US |