dc.contributor.author | Thuong, L.Q. | |
dc.date.accessioned | 2017-01-03T17:53:33Z | |
dc.date.available | 2017-01-03T17:53:33Z | |
dc.date.issued | 2016-12-16 | |
dc.identifier.issn | 0251-4184 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/341 | |
dc.description.abstract | In Kontsevich-Soibelman’s theory of motivic Donaldson-Thomas invariants for 3-dimensional noncommutative Calabi-Yau varieties, the integral identity conjecture plays a crucial role as it involves the existence of these invariants. A purpose of this note is to show how the conjecture arises. Because of the integral identity’s nature, we shall give a quick tour on theories of motivic integration, which lead to a proof of the conjecture for algebraically closed ground fields of characteristic zero. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Motivic integration | en_US |
dc.subject | Formal schemes | en_US |
dc.subject | Rigid varieties | en_US |
dc.subject | Volume Poincaré series | en_US |
dc.subject | Resolution of singularity | en_US |
dc.subject | Integral identity conjecture | en_US |
dc.subject | Definable sets | en_US |
dc.title | A Short Survey on the Integral Identity Conjectureand Theories of Motivic Integration | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1007/s40306-016-0197-5 | |
dc.relation.publisherversion | http://link.springer.com/article/10.1007%2Fs40306-016-0197-5 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/615655 | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Acta Mathematica Vietnamica | en_US |