Show simple item record

dc.contributor.authorEscauriaza, L.
dc.contributor.authorKenig, C.E.
dc.contributor.authorPonce, G.
dc.contributor.authorVega, L. 
dc.date.accessioned2017-01-04T16:25:21Z
dc.date.available2017-01-04T16:25:21Z
dc.date.issued2016-09-01
dc.identifier.issn0010-3616
dc.identifier.urihttp://hdl.handle.net/20.500.11824/342
dc.description.abstractWe give a new proof of the $L^2$ version of Hardy’s uncertainty principle based on calculus and on its dynamical version for the heat equation. The reasonings rely on new log-convexity properties and the derivation of optimal Gaussian decay bounds for solutions to the heat equation with Gaussian decay at a future time.We extend the result to heat equations with lower order variable coefficient.en_US
dc.description.sponsorshipIT641-13 (GIC12/96), DMS-0968472, DMS-1265249en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleHardy uncertainty principle, convexity and parabolic evolutionsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.arxiv1506.05670v1
dc.identifier.doi10.1007/s00220-015-2500-z
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs00220-015-2500-zen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDES/1PE/MTM2014-53145-Pen_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleCommunications in Mathematical Physicsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España