dc.contributor.author | Dan, A. | |
dc.date.accessioned | 2017-01-10T14:41:45Z | |
dc.date.available | 2017-01-10T14:41:45Z | |
dc.date.issued | 2017-01-10 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/346 | |
dc.description.abstract | In this article, we study the Hilbert scheme of effective divisors in smooth hypersurfaces in $\mathbb{P}^3$, a topic
not extensively studied. We prove that there exists such effective divisors $D$ satisfying
the property: there exists infinitesimal deformations of $D$ not deforming the associated reduced scheme $D_{\mathrm{red}}$.
We observe that such infinitesimal deformations contribute to non-reducedness of the corresponding
Hilbert scheme. We finally introduce a concept of simple extension of curves and notice that the above
mentioned property is preserved under simple extension of curves. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | Singularities of the Hilbert scheme of effective divisors | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.arxiv | 1611.03027 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/615655 | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |