Show simple item record

dc.contributor.authorDan A.en_US
dc.date.accessioned2017-01-10T14:41:45Z
dc.date.available2017-01-10T14:41:45Z
dc.date.issued2017-01-10
dc.identifier.urihttp://hdl.handle.net/20.500.11824/346
dc.description.abstractIn this article, we study the Hilbert scheme of effective divisors in smooth hypersurfaces in $\mathbb{P}^3$, a topic not extensively studied. We prove that there exists such effective divisors $D$ satisfying the property: there exists infinitesimal deformations of $D$ not deforming the associated reduced scheme $D_{\mathrm{red}}$. We observe that such infinitesimal deformations contribute to non-reducedness of the corresponding Hilbert scheme. We finally introduce a concept of simple extension of curves and notice that the above mentioned property is preserved under simple extension of curves.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleAccuracy of Classical Conductivity Theory at Atomic Scales for Free Fermions in Disordered Mediaen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.arxiv1611.03027
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/615655en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España