Browsing Linear and NonLinear Waves by Title
Now showing items 1938 of 61

Hardy uncertainty principle, convexity and parabolic evolutions
(Communications in Mathematical Physics, 20160901)We give a new proof of the $L^2$ version of Hardy’s uncertainty principle based on calculus and on its dynamical version for the heat equation. The reasonings rely on new logconvexity properties and the derivation of ... 
A Hardytype inequality and some spectral characterizations for the Dirac–Coulomb operator
(Revista Matemática Complutense, 201906)We prove a sharp Hardytype inequality for the Dirac operator. We exploit this inequality to obtain spectral properties of the Dirac operator perturbed with Hermitian matrixvalued potentials $\mathbf V$ of Coulomb type: ... 
HartreeFock theory with a selfgenerated magnetic field
(Journal of Mathematical Physics, 20170601)We prove the existence of a ground state within the HartreeFock theory for atoms and molecules, in the presence of selfgenerated magnetic fields, with and without direct spin coupling. The ground state exists provided ... 
Hypocoercivity of linear kinetic equations via Harris's Theorem
(Kinetic & Related Models, 20190227)We study convergence to equilibrium of the linear relaxation Boltzmann (also known as linear BGK) and the linear Boltzmann equations either on the torus $(x,v) \in \mathbb{T}^d \times \mathbb{R}^d$ or on the whole ... 
Klein's Paradox and the Relativistic $\delta$shell Interaction in $\mathbb{R}^3$
(Analysis & PDE, 201711)Under certain hypothesis of smallness of the regular potential $\mathbf{V}$, we prove that the Dirac operator in $\mathbb{R}^3$ coupled with a suitable rescaling of $\mathbf{V}$, converges in the strong resolvent sense ... 
Lorentz estimates for asymptotically regular fully nonlinear parabolic equations
(Mathematische Nachrichten, 20170620)We prove a global Lorentz estimate of the Hessian of strong solutions to the CauchyDirichlet problem for a class of fully nonlinear parabolic equations with asymptotically regular nonlinearity over a bounded $C^{1,1}$ ... 
Lorentz estimates for the gradient of weak solutions to elliptic obstacle problems with partially BMO coefficients
(Boundary Value Problems, 2017)We prove global Lorentz estimates for variable power of the gradient of weak solution to linear elliptic obstacle problems with small partially BMO coefficients over a bounded nonsmooth domain. Here, we assume that the ... 
Meanfield dynamics of the spinmagnetization coupling in ferromagnetic materials: Application to currentdriven domain wall motions
(IEEE Transactions on Magnetics, 20151231)In this paper, we present a meanfield model of the spinmagnetization coupling in ferromagnetic materials. The model includes nonisotropic diffusion for spin dynamics, which is crucial in capturing strong spinmagnetization ... 
Modeling cardiac structural heterogeneity via spacefractional differential equations
(Computational and Mathematical Biomedical Engineering (CMBE2017) Proceedings, 2017)We discuss here the use of nonlocal models in space and fractional order operators in the characterisation of structural complexity and the modeling of propagation in heterogeneous biological tissues. In the specific, we ... 
Monotonicity and convexity of the ratios of the first kind modified Bessel functions and applications
(Mathematical Inequalities & Applications, 20170718)Let $I_{v}\left( x\right) $ be modified Bessel functions of the first kind. We prove the monotonicity property of the function $x\mapsto I_{u}\left( x\right) I_{v}\left( x\right) /I_{\left( u+v\right) /2}\left( x\right) ... 
On the bound states of Schrödinger operators with $\delta$interactions on conical surfaces
(Communications in Partial Differential Equations, 20160630)In dimension greater than or equal to three, we investigate the spectrum of a Schrödinger operator with a $\delta$interaction supported on a cone whose cross section is the sphere of codimension two. After decomposing ... 
On the improvement of the Hardy inequality due to singular magnetic fields
(20180712)We establish magnetic improvements upon the classical Hardy inequality for two specific choices of singular magnetic fields. First, we consider the AharonovBohm field in all dimensions and establish a sharp Hardytype ... 
On the regularity of solutions to the kgeneralized kortewegde vries equation
(Proceedings of the American Mathematical Society, 201807)This work is concerned with special regularity properties of solutions to the kgeneralized Kortewegde Vries equation. In [Comm. Partial Differential Equations 40 (2015), 1336–1364] it was established that if the initial ... 
On the Relationship between the OneCorner Problem and the $M$Corner Problem for the Vortex Filament Equation
(Journal of Nonlinear Science, 20180628)In this paper, we give evidence that the evolution of the vortex filament equation (VFE) for a regular Mcorner polygon as initial datum can be explained at infinitesimal times as the superposition of M onecorner initial ... 
Reconstruction from boundary measurements for less regular conductivities
(20161001)In this paper, following Nachman's idea [14] and Haberman and Tataru's idea [9], we reconstruct $C^1$ conductivity $\gamma$ or Lipchitz conductivity $\gamma$ with small enough value of $\nabla log\gamma$ in a Lipschitz ... 
Regularity of fractional maximal functions through Fourier multipliers
(2018)We prove endpoint bounds for derivatives of fractional maximal functions with either smooth convolution kernel or lacunary set of radii in dimensions $n \geq 2$. We also show that the spherical fractional maximal function ... 
Relativistic Hardy Inequalities in Magnetic Fields
(Journal of Statistical Physics, 20141231)We deal with Dirac operators with external homogeneous magnetic fields. Hardytype inequalities related to these operators are investigated: for a suitable class of transversal magnetic fields, we prove a Hardy inequality ... 
The relativistic spherical $\delta$shell interaction in $\mathbb{R}^3$: spectrum and approximation
(Journal of Mathematical Physics, 20170803)This note revolves on the free Dirac operator in $\mathbb{R}^3$ and its $\delta$shell interaction with electrostatic potentials supported on a sphere. On one hand, we characterize the eigenstates of those couplings by ... 
Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments
(SIAM Journal on Numerical Analysis, 2018)\noindent We develop a unified and easy to use framework to study robust fully discrete numerical methods for nonlinear degenerate diffusion equations $$ \partial_t u\mathfrak{L}[\varphi(u)]=f(x,t) \qquad\text{in}\qquad ... 
SelfAdjoint Extensions for the Dirac Operator with CoulombType Spherically Symmetric Potentials
(Letters in Mathematical Physics, 2018)We describe the selfadjoint realizations of the operator $H:=i\alpha\cdot \nabla + m\beta + \mathbb V(x)$, for $m\in\mathbb R $, and $\mathbb V(x)= x^{1} ( \nu \mathbb{I}_4 +\mu \beta i \lambda \alpha\cdot{x}/{x}\,\beta)$, ...