• English
    • Basque
    • español
  • English 
    • English
    • Basque
    • español
  • Login
Search 
  •   BIRD Home
  • Analysis of Partial Differential Equations (APDE)
  • Linear and Non-Linear Waves
  • Search
  •   BIRD Home
  • Analysis of Partial Differential Equations (APDE)
  • Linear and Non-Linear Waves
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filtros

Use filtros para refinar sus resultados.

Now showing items 1-10 of 44

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

The Frisch–Parisi formalism for fluctuations of the Schrödinger equation 

Kumar, S.; Ponce Vanegas, F.Autoridad BCAM; Roncal, L.Autoridad BCAM; Vega, L.Autoridad BCAM (2022)
We consider the solution of the Schrödinger equation $u$ in $\mathbb{R}$ when the initial datum tends to the Dirac comb. Let $h_{\text{p}, \delta}(t)$ be the fluctuations in time of $\int\lvert x \rvert^{2\delta}\lvert ...
Thumbnail

Static and Dynamical, Fractional Uncertainty Principles 

Kumar, S.; Ponce Vanegas, F.Autoridad BCAM; Vega, L.Autoridad BCAM (2021-03)
We study the process of dispersion of low-regularity solutions to the Schrödinger equation using fractional weights (observables). We give another proof of the uncertainty principle for fractional weights and use it to get ...
Thumbnail

On the improvement of the Hardy inequality due to singular magnetic fields 

Fanelli, L.Autoridad BCAM; Krejčiřík, D.; Laptev, A.; Vega, L.Autoridad BCAM (2020-09-01)
We establish magnetic improvements upon the classical Hardy inequality for two specific choices of singular magnetic fields. First, we consider the Aharonov-Bohm field in all dimensions and establish a sharp Hardy-type ...
Thumbnail

On the unique continuation of solutions to non-local non-linear dispersive equations 

Kenig, C. E.; Pilod, D.; Ponce, G.; Vega, L.Autoridad BCAM (2020-08-02)
We prove unique continuation properties of solutions to a large class of nonlinear, non-local dispersive equations. The goal is to show that if (Formula presented.) are two suitable solutions of the equation defined in ...
Thumbnail

Riemann's non-differentiable function and the binormal curvature flow 

Banica, V.; Vega, L.Autoridad BCAM (2020-07-14)
We make a connection between a famous analytical object introduced in the 1860s by Riemann, as well as some variants of it, and a nonlinear geometric PDE, the binormal curvature flow. As a consequence this analytical object ...
Thumbnail

Vortex Filament Equation for a regular polygon in the hyperbolic plane 

de la Hoz, F.; Kumar, S.; Vega, L.Autoridad BCAM (2020-07-09)
The aim of this article is twofold. First, we show the evolution of the vortex filament equation (VFE) for a regular planar polygon in the hyperbolic space. Unlike in the Euclidean space, the planar polygon is open and ...
Thumbnail

On the energy of critical solutions of the binormal flow 

Banica, V.; Vega, L.Autoridad BCAM (2020-07-02)
The binormal flow is a model for the dynamics of a vortex filament in a 3-D inviscid incompressible fluid. The flow is also related with the classical continuous Heisenberg model in ferromagnetism, and the 1-D cubic ...
Thumbnail

Evolution of Polygonal Lines by the Binormal Flow 

Banica, V.; Vega, L.Autoridad BCAM (2020-06-01)
The aim of this paper is threefold. First we display solutions of the cubic nonlinear Schrödinger equation on R in link with initial data a sum of Dirac masses. Secondly we show a Talbot effect for the same equation. Finally ...
Thumbnail

Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation 

Correia, S.; Côte, R.; Vega, L.Autoridad BCAM (2020-05-01)
We give the asymptotics of the Fourier transform of self-similar solutions for the modified Korteweg-de Vries equation. In the defocussing case, the self-similar profiles are solutions to the Painlevé II equation; although ...
Thumbnail

Uniqueness properties of solutions to the Benjamin-Ono equation and related models 

Kenig, C. E.; Ponce, G.; Vega, L.Autoridad BCAM (2020-03-15)
We prove that if u1,u2 are real solutions of the Benjamin-Ono equation defined in (x,t)∈R×[0,T] which agree in an open set Ω⊂R×[0,T], then u1≡u2. We extend this uniqueness result to a general class of equations of Benjamin-Ono ...
  • 1
  • 2
  • 3
  • 4
  • . . .
  • 5

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
 

 

Browse

All of BIRDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Descubre

Author
Vega, L. (44)
Fanelli, L. (8)Banica, V. (7)Ponce, G. (6)Krejcirik, D. (5)Correia, S. (4)Côte, R. (4)De la Hoz, F. (4)Kumar, S. (4)Cassano, B. (3)... másSubjectDirac operator (3)Hardy inequality (3)Nonlinear dispersive equation (3)Vortex filaments (3)Benjamin-Ono equation (2)bilinear identities (2)Binormal Flow (2)Coulomb potential (2)Fourier extension operators (2)Multifractality (2)... másFecha2022 (1)2021 (1)2020 (10)2019 (10)2018 (9)2017 (3)2016 (3)2015 (5)2014 (2)

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback