Search
Now showing items 1-10 of 44
The Frisch–Parisi formalism for fluctuations of the Schrödinger equation
(2022)
We consider the solution of the Schrödinger equation $u$ in $\mathbb{R}$ when the initial datum tends to the Dirac comb. Let $h_{\text{p}, \delta}(t)$ be the fluctuations in time of $\int\lvert x \rvert^{2\delta}\lvert ...
Static and Dynamical, Fractional Uncertainty Principles
(2021-03)
We study the process of dispersion of low-regularity solutions to the Schrödinger equation using fractional weights (observables). We give another proof of the uncertainty principle for fractional weights and use it to get ...
On the improvement of the Hardy inequality due to singular magnetic fields
(2020-09-01)
We establish magnetic improvements upon the classical Hardy inequality for two specific choices of singular magnetic fields. First, we consider the Aharonov-Bohm field in all dimensions and establish a sharp Hardy-type ...
On the unique continuation of solutions to non-local non-linear dispersive equations
(2020-08-02)
We prove unique continuation properties of solutions to a large class of nonlinear, non-local dispersive equations. The goal is to show that if (Formula presented.) are two suitable solutions of the equation defined in ...
Riemann's non-differentiable function and the binormal curvature flow
(2020-07-14)
We make a connection between a famous analytical object introduced in the 1860s by Riemann, as well as some variants of it, and a nonlinear geometric PDE, the binormal curvature flow. As a consequence this analytical object ...
Vortex Filament Equation for a regular polygon in the hyperbolic plane
(2020-07-09)
The aim of this article is twofold. First, we show the evolution of the vortex filament equation (VFE) for a regular planar polygon in the hyperbolic space. Unlike in the Euclidean space, the planar polygon is open and ...
On the energy of critical solutions of the binormal flow
(2020-07-02)
The binormal flow is a model for the dynamics of a vortex filament in a 3-D inviscid incompressible fluid. The flow is also related with the classical continuous Heisenberg model in ferromagnetism, and the 1-D cubic ...
Evolution of Polygonal Lines by the Binormal Flow
(2020-06-01)
The aim of this paper is threefold. First we display solutions of the cubic nonlinear Schrödinger equation on R in link with initial data a sum of Dirac masses. Secondly we show a Talbot effect for the same equation. Finally ...
Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation
(2020-05-01)
We give the asymptotics of the Fourier transform of self-similar solutions for the modified Korteweg-de Vries equation. In the defocussing case, the self-similar profiles are solutions to the Painlevé II equation; although ...
Uniqueness properties of solutions to the Benjamin-Ono equation and related models
(2020-03-15)
We prove that if u1,u2 are real solutions of the Benjamin-Ono equation defined in (x,t)∈R×[0,T] which agree in an open set Ω⊂R×[0,T], then u1≡u2. We extend this uniqueness result to a general class of equations of Benjamin-Ono ...