Search
Now showing items 1-7 of 7
Riemann's non-differentiable function and the binormal curvature flow
(2020-07-14)
We make a connection between a famous analytical object introduced in the 1860s by Riemann, as well as some variants of it, and a nonlinear geometric PDE, the binormal curvature flow. As a consequence this analytical object ...
On the energy of critical solutions of the binormal flow
(2020-07-02)
The binormal flow is a model for the dynamics of a vortex filament in a 3-D inviscid incompressible fluid. The flow is also related with the classical continuous Heisenberg model in ferromagnetism, and the 1-D cubic ...
Evolution of Polygonal Lines by the Binormal Flow
(2020-06-01)
The aim of this paper is threefold. First we display solutions of the cubic nonlinear Schrödinger equation on R in link with initial data a sum of Dirac masses. Secondly we show a Talbot effect for the same equation. Finally ...
Evolution of Polygonal Lines by the Binormal Flow
(2020-02-05)
The aim of this paper is threefold. First we display solutions of the cubic nonlinear Schr ̈odinger equation on R in link with initial data a sum of Dirac masses. Secondly we show a Talbot effect for the same equation. ...
On the energy of critical solutions of the binormal flow
(2019-07-20)
The binormal flow is a model for the dynamics of a vortex filament in a 3-D inviscid incompressible fluid. The flow is also related with the classical continuous Heisen- berg model in ferromagnetism, and the 1-D cubic Schr ...
Singularity formation for the 1-D cubic NLS and the Schrödinger map on $\mathbb{S}^2$
(2017-02-02)
In this note we consider the 1-D cubic Schrödinger equation with data given as small perturbations of a Dirac-$\delta$ function and some other related equations. We first recall that although the problem for this type of ...
The initial value problem for the binormal flow with rough data
(2015-12-31)
In this article we consider the initial value problem of the binormal flow with initial data given by curves that are regular except at one point where they have a corner. We prove that under suitable conditions on the ...