Search
Now showing items 1-6 of 6
The Frisch–Parisi formalism for fluctuations of the Schrödinger equation
(2022)
We consider the solution of the Schrödinger equation $u$ in $\mathbb{R}$ when the initial datum tends to the Dirac comb. Let $h_{\text{p}, \delta}(t)$ be the fluctuations in time of $\int\lvert x \rvert^{2\delta}\lvert ...
On the Schrödinger map for regular helical polygons in the hyperbolic space
(2022-01-01)
The main purpose of this article is to understand the evolution of X t = X s ∧− X ss , with X(s, 0) a regular polygonal curve with a nonzero torsion in the three-dimensional Minkowski space. Unlike in the case of the ...
Static and Dynamical, Fractional Uncertainty Principles
(2021-03)
We study the process of dispersion of low-regularity solutions to the Schrödinger equation using fractional weights (observables). We give another proof of the uncertainty principle for fractional weights and use it to get ...
Vortex Filament Equation for a regular polygon in the hyperbolic plane
(2020-07-09)
The aim of this article is twofold. First, we show the evolution of the vortex filament equation (VFE) for a regular planar polygon in the hyperbolic space. Unlike in the Euclidean space, the planar polygon is open and ...
Vortex Filament Equation for some Regular Polygonal Curves
(2020-06-15)
One of the most interesting phenomena in fluid literature is the occurrence and evolution of vortex filaments. Some of their examples in the real world are smoke rings, whirlpools, and tornadoes. For an ideal fluid, there ...
On the Evolution of the Vortex Filament Equation for regular M-polygons with nonzero torsion
(2019-09-03)
In this paper, we consider the evolution of the Vortex Filament equa- tion (VFE):
Xt = Xs ∧ Xss,
taking M-sided regular polygons with nonzero torsion as initial data. Us- ing algebraic techniques, backed by numerical ...