• English
    • Basque
    • español
  • English 
    • English
    • Basque
    • español
  • Login
Search 
  •   BIRD Home
  • Analysis of Partial Differential Equations (APDE)
  • Linear and Non-Linear Waves
  • Search
  •   BIRD Home
  • Analysis of Partial Differential Equations (APDE)
  • Linear and Non-Linear Waves
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filtros

Use filtros para refinar sus resultados.

Now showing items 1-7 of 7

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Self-adjointness of two-dimensional Dirac operators on corner domains 

Pizzichillo, F.; Van Den Bosch, H. (2021-01-01)
We investigate the self-adjointness of the two-dimensional Dirac operator D, with quantum-dot and Lorentz-scalar i-shell boundary conditions, on piecewise C2 domains (with finitely many corners). For both models, we prove ...
Thumbnail

Dirac Operators and Shell Interactions: A Survey 

Ourmières-Bonafos, T.; Pizzichillo, F. (2021-01-01)
In this survey we gather recent results on Dirac operators coupled with δ-shell interactions. We start by discussing recent advances regarding the question of self-adjointness for these operators. Afterwards we switch to ...
Thumbnail

A Hardy-type inequality and some spectral characterizations for the Dirac–Coulomb operator 

Cassano, B.; Pizzichillo, F.; Vega, L.Autoridad BCAM (2020-01-01)
We prove a sharp Hardy-type inequality for the Dirac operator. We exploit this inequality to obtain spectral properties of the Dirac operator perturbed with Hermitian matrix-valued potentials V of Coulomb type: we characterise ...
Thumbnail

A Hardy-type inequality and some spectral characterizations for the Dirac-Coulomb operator 

Cassano, B.; Pizzichillo, F.; Vega, L.Autoridad BCAM (2019-07-02)
We prove a sharp Hardy-type inequality for the Dirac operator. We exploit this inequality to obtain spectral properties of the Dirac operator perturbed with Hermitian matrix-valued potentials V of Coulomb type: we characterise ...
Thumbnail

Self-Adjoint Extensions for the Dirac Operator with Coulomb-Type Spherically Symmetric Potentials 

Cassano, B.; Pizzichillo, F. (2018)
We describe the self-adjoint realizations of the operator $H:=-i\alpha\cdot \nabla + m\beta + \mathbb V(x)$, for $m\in\mathbb R $, and $\mathbb V(x)= |x|^{-1} ( \nu \mathbb{I}_4 +\mu \beta -i \lambda \alpha\cdot{x}/{|x|}\,\beta)$, ...
Thumbnail

Klein's Paradox and the Relativistic $\delta$-shell Interaction in $\mathbb{R}^3$ 

Mas, A.; Pizzichillo, F. (2017-11)
Under certain hypothesis of smallness of the regular potential $\mathbf{V}$, we prove that the Dirac operator in $\mathbb{R}^3$ coupled with a suitable re-scaling of $\mathbf{V}$, converges in the strong resolvent sense ...
Thumbnail

Shell interactions for Dirac operators: On the point spectrum and the confinement 

Arrizabalaga, N.; Mas, A.; Vega, L.Autoridad BCAM (2015-12-31)
Spectral properties and the confinement phenomenon for the coupling $H + V$ are studied, where $H =-i\alpha \cdot \nabla + m\beta$ is the free Dirac operator in $\mathbb{R}^3$ and $V$ is a measure-valued potential. The ...

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
 

 

Browse

All of BIRDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Descubre

AuthorPizzichillo, F. (6)Cassano, B. (3)Vega, L. (3)Mas, A. (2)Arrizabalaga, N. (1)Ourmières-Bonafos, T. (1)Van Den Bosch, H. (1)Subject
Dirac operator (7)
Coulomb potential (3)Hardy inequality (3)Self-adjoint operator (2)self-adjoint operator (2)$\delta$-shell interaction (1)approximation by scaled regular potentials (1)Boundary conditions (1)Conformal map (1)Corner domains (1)... másFecha2021 (2)2020 (1)2019 (1)2018 (1)2017 (1)2015 (1)

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback