Show simple item record

dc.contributor.authorEnatsu Y.
dc.contributor.authorNakata Y.
dc.contributor.authorMuroya Y.
dc.contributor.authorIzzo G.
dc.contributor.authorVecchio A.
dc.date.accessioned2017-02-21T08:16:48Z
dc.date.available2017-02-21T08:16:48Z
dc.date.issued2012-12-31
dc.identifier.issn1023-6198
dc.identifier.urihttp://hdl.handle.net/20.500.11824/413
dc.description.abstractIn this paper, by applying a variation of the backward Euler method, we propose a discrete-time SIR epidemic model whose discretization scheme preserves the global asymptotic stability of equilibria for a class of corresponding continuous-time SIR epidemic models. Using discrete-time analogue of Lyapunov functionals, the global asymptotic stability of the equilibria is fully determined by the basic reproduction number, when the infection incidence rate has a suitable monotone property. © 2012 Copyright Taylor and Francis Group, LLC.
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Difference Equations and Applications
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subjectbackward Euler method
dc.subjectbasic reproduction number
dc.subjectdifference equation
dc.subjectglobal asymptotic stability
dc.subjectSIR epidemic model
dc.titleGlobal dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1080/10236198.2011.555405
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84863469125&doi=10.1080%2f10236198.2011.555405&partnerID=40&md5=bd7dd6669387a697ab6d85cb901ad289


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess