Show simple item record

dc.contributor.authorEnatsu, Y.
dc.contributor.authorNakata, Y.
dc.contributor.authorMuroya, Y.
dc.contributor.authorIzzo, G.
dc.contributor.authorVecchio, A.
dc.date.accessioned2017-02-21T08:16:48Z
dc.date.available2017-02-21T08:16:48Z
dc.date.issued2012-12-31
dc.identifier.issn1023-6198
dc.identifier.urihttp://hdl.handle.net/20.500.11824/413
dc.description.abstractIn this paper, by applying a variation of the backward Euler method, we propose a discrete-time SIR epidemic model whose discretization scheme preserves the global asymptotic stability of equilibria for a class of corresponding continuous-time SIR epidemic models. Using discrete-time analogue of Lyapunov functionals, the global asymptotic stability of the equilibria is fully determined by the basic reproduction number, when the infection incidence rate has a suitable monotone property.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectbackward Euler method
dc.subjectbasic reproduction number
dc.subjectdifference equation
dc.subjectglobal asymptotic stability
dc.subjectSIR epidemic model
dc.titleGlobal dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1080/10236198.2011.555405
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84863469125&doi=10.1080%2f10236198.2011.555405&partnerID=40&md5=bd7dd6669387a697ab6d85cb901ad289
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleJournal of Difference Equations and Applicationsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España