Show simple item record

dc.contributor.authorAraruna F.D.
dc.contributor.authorE Silva P.B.
dc.contributor.authorZuazua E.
dc.date.accessioned2017-02-21T08:18:16Z
dc.date.available2017-02-21T08:18:16Z
dc.date.issued2010-12-31
dc.identifier.issn1009-6124
dc.identifier.urihttp://hdl.handle.net/20.500.11824/491
dc.description.abstractThis paper shows how the so called von Kármán model can be obtained as a singular limit of a modified Mindlin-Timoshenko system when the modulus of elasticity in shear k tends to infinity, provided a regularizing term through a fourth order dispersive operator is added. Introducing damping mechanisms, the authors also show that the energy of solutions for this modified Mindlin-Timoshenko system decays exponentially, uniformly with respect to the parameter k. As k → ∞, the authors obtain the damped von Kármán model with associated energy exponentially decaying to zero as well. © 2010 Institute of Systems Science, Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg.
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Systems Science and Complexity
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subjectMindlin-Timoshenko system
dc.subjectSingular limit
dc.subjectUniform stabilization
dc.subjectVibrating beams
dc.subjectVon Kármán system
dc.titleAsymptotic limits and stabilization for the 1D nonlinear Mindlin-Timoshenko system
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/s11424-010-0137-8
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77954395725&doi=10.1007%2fs11424-010-0137-8&partnerID=40&md5=745ac3dbcff662d2e5ffceec7a369925


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess