Show simple item record

dc.contributor.authorAraruna, F.D.
dc.contributor.authorE Silva, P.B.
dc.contributor.authorZuazua, E.
dc.date.accessioned2017-02-21T08:18:16Z
dc.date.available2017-02-21T08:18:16Z
dc.date.issued2010-12-31
dc.identifier.issn1009-6124
dc.identifier.urihttp://hdl.handle.net/20.500.11824/491
dc.description.abstractThis paper shows how the so called von Kármán model can be obtained as a singular limit of a modified Mindlin-Timoshenko system when the modulus of elasticity in shear k tends to infinity, provided a regularizing term through a fourth order dispersive operator is added. Introducing damping mechanisms, the authors also show that the energy of solutions for this modified Mindlin-Timoshenko system decays exponentially, uniformly with respect to the parameter k. As k → ∞, the authors obtain the damped von Kármán model with associated energy exponentially decaying to zero as well.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectMindlin-Timoshenko system
dc.subjectSingular limit
dc.subjectUniform stabilization
dc.subjectVibrating beams
dc.subjectVon Kármán system
dc.titleAsymptotic limits and stabilization for the 1D nonlinear Mindlin-Timoshenko system
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1007/s11424-010-0137-8
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77954395725&doi=10.1007%2fs11424-010-0137-8&partnerID=40&md5=745ac3dbcff662d2e5ffceec7a369925
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleJournal of Systems Science and Complexityen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España