Show simple item record

dc.contributor.authorMarica, A.
dc.contributor.authorZuazua, E.
dc.date.accessioned2017-02-21T08:18:17Z
dc.date.available2017-02-21T08:18:17Z
dc.date.issued2010-12-31
dc.identifier.issn1631-073X
dc.identifier.urihttp://hdl.handle.net/20.500.11824/499
dc.description.abstractWe study the propagation properties of the solutions of the finite difference space semi-discrete wave equation on a uniform grid of the whole Euclidean space. We provide a construction of high frequency wave packets that propagate along the corresponding bi-characteristic rays of Geometric Optics with a group velocity arbitrarily close to zero. Our analysis is motivated by control theoretical issues. In particular, the continuous wave equation has the so-called observability property: for a sufficiently large time, the total energy of its solutions can be estimated in terms of the energy concentrated in the exterior of a compact set. This fails to be true, uniformly on the mesh-size parameter, for the semi-discrete schemes and the observability constant blows-up at an arbitrarily large polynomial order. Our contribution consists in providing a rigorous derivation of those wave packets and in analyzing their behavior near that ray, by taking into account the subtle added dispersive effects that the numerical scheme introduces. On étudie les propriétés de propagation des solutions de l'équation des ondes semi-discretisée en espace par différences finies sur une grille uniforme dans tout l'espace euclidien. On réalise une construction de paquets d'ondes concentrés à haute fréquence qui se propagent le long des rayons bicaractéristiques de l'Optique Géométrique à une vitesse de groupe arbitrairement petite. Notre analyse est motivée par la théorie du contrôle. Plus précisement, l'équation des ondes continue vérifie la propriété d'observabilité: pour un temps suffisament grand, l'énergie totale de ses solutions peut être estimée en fonction de l'énergie localisée à l'extérieur d'un ensemble compact. Cette propriété n'est pas verifiée de manière uniforme par rapport au pas de discrétisation pour le schéma semi-discret pour un temps fini quelconque, si bien que la constante d'observabilité semi-discrète diverge avec un taux polynomial arbitraire. Nous donnons une construction précise de ces paquets d'ondes et decrivons l'effet dispersif rajouté que le schéma numérique génère autour du rayon de propagation.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleLocalized solutions for the finite difference semi-discretization of the wave equation [Solutions localisées pour la semi-discrétisation par différences finies de l'équation des ondes]
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1016/j.crma.2010.03.020
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77953683223&doi=10.1016%2fj.crma.2010.03.020&partnerID=40&md5=2fc1db082f2895e9638fb718b1213fbb
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleComptes Rendus Mathematiqueen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España