• English
    • euskara
    • español
  • English 
    • English
    • euskara
    • español
  • Login
Search 
  •   BIRD Home
  • Computational Mathematics (CM)
  • Search
  •   BIRD Home
  • Computational Mathematics (CM)
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filtros

Use filtros para refinar sus resultados.

Now showing items 1-4 of 4

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Efficient mass and stiffness matrix assembly via weighted Gaussian quadrature rules for B-splines 

Barton, M.Autoridad BCAM; Puzyrev, V.; Deng, Q.; Calo, V.M. (2019-12-14)
Calabr{\`o} et al. [10] changed the paradigm of the mass and stiffness computation from the traditional element-wise assembly to a row-wise concept, showing that the latter one offers integration that may be orders of ...
Thumbnail

Gaussian quadrature rules for $C^1$ quintic splines with uniform knot vectors 

Barton, M.Autoridad BCAM; Ait-Haddou, R.; Calo, V.M. (2017-03-22)
We provide explicit quadrature rules for spaces of $C^1$ quintic splines with uniform knot sequences over finite domains. The quadrature nodes and weights are derived via an explicit recursion that avoids numerical solvers. ...
Thumbnail

Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis 

Barton, M.Autoridad BCAM; Calo, V.M. (2016-07-01)
We introduce Gaussian quadrature rules for spline spaces that are frequently used in Galerkin discretizations to build mass and stiffness matrices. By definition, these spaces are of even degrees. The optimal quadrature ...
Thumbnail

Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis 

Barton, M.Autoridad BCAM; Calo, V.M. (2016-01-01)
We introduce optimal quadrature rules for spline spaces that are frequently used in Galerkin discretizations to build mass and stiffness matrices. Using the homotopy continuation concept (Barton and Calo, 2016) that ...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 

Browse

All of BIRDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CommunityBy Issue DateAuthorsTitlesSubjects

My Account

Login

Descubre

AuthorBarton, M. (4)Calo, V.M. (4)Ait-Haddou, R. (1)Deng, Q. (1)Puzyrev, V. (1)Subject
B-splines (4)
Gaussian quadrature (3)Galerkin method (2)isogeometric analysis (2)$C^1$ continuity (1)Homotopy continuation for quadrature (1)homotopy continuation for quadrature (1)Isogeometric analysis (1)mass and stiffness matrix assembly (1)Optimal quadrature rules (1)... másFecha2019 (1)2017 (1)2016 (2)

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback