Show simple item record

dc.contributor.authorBoscain U.
dc.contributor.authorCharlot G.
dc.contributor.authorRossi F.
dc.date.accessioned2017-02-21T08:18:17Z
dc.date.available2017-02-21T08:18:17Z
dc.date.issued2009-12-31
dc.identifier.isbn978-1-42-443871-6
dc.identifier.issn0191-2216
dc.identifier.urihttp://hdl.handle.net/20.500.11824/509
dc.description.abstractIn this paper we consider the problem of reconstructing a curve that is partially hidden or corrupted by minimizing the functional ∫ √1+K 2 ds, depending both on length and curvature K. We fix starting and ending points as well as initial and final directions. For this functional, we find non-existence of minimizers on various functional spaces in which the problem is naturally formulated. In this case, minimizing sequences of trajectories can converge to curves with angles. We instead prove existence of minimizers for the "time-reparameterized" functional ∫
dc.description.abstractγ(t)
dc.description.abstract√1+Kγ2 dt for all boundary conditions if initial and final directions are considered regardless to orientation. ©2009 IEEE.
dc.formatapplication/pdf
dc.languageeng
dc.publisherProceedings of the IEEE Conference on Decision and Control
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subjectElastica functional
dc.subjectExistence of minimizers
dc.subjectGeometry of vision
dc.titleMinimization of length and curvature on planar curves
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/CDC.2009.5399749
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77950810494&doi=10.1109%2fCDC.2009.5399749&partnerID=40&md5=b712595956b0dc1e6ab4df68cc0c3b56


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess