Show simple item record

dc.contributor.authorKatzourakis, N.I.
dc.date.accessioned2017-02-21T08:18:17Z
dc.date.available2017-02-21T08:18:17Z
dc.date.issued2013-12-31
dc.identifier.issn0944-2669
dc.identifier.urihttp://hdl.handle.net/20.500.11824/512
dc.description.abstractWe establish Maximum Principles which apply to vectorial approximate minimizers of the general integral functional of Calculus of Variations. Our main result is a version of the Convex Hull Property. The primary advance compared to results already existing in the literature is that we have dropped the quasiconvexity assumption of the integrand in the gradient term. The lack of weak Lower semicontinuity is compensated by introducing a nonlinear convergence technique, based on the approximation of the projection onto a convex set by reflections and on the invariance of the integrand in the gradient term under the Orthogonal Group. Maximum Principles are implied for the relaxed solution in the case of non-existence of minimizers and for minimizing solutions of the Euler-Lagrange system of PDE.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleMaximum Principles for vectorial approximate minimizers of nonconvex functionals
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1007/s00526-012-0491-6
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84873746105&doi=10.1007%2fs00526-012-0491-6&partnerID=40&md5=073857beed4cc1814768d3692cbe9f8f
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleCalculus of Variations and Partial Differential Equationsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España