Show simple item record

dc.contributor.authorDe Teresa L.
dc.contributor.authorZuazua E.
dc.date.accessioned2017-02-21T08:18:18Z
dc.date.available2017-02-21T08:18:18Z
dc.date.issued2009-12-31
dc.identifier.issn1534-0392
dc.identifier.urihttp://hdl.handle.net/20.500.11824/515
dc.description.abstractThis paper is devoted to analyze the class of initial data that can be insensitized for the heat equation. This issue has been extensively addressed in the literature both in the case of complete and approximate insensitization (see[19] and[1], respectively). But in the context of pure insensitization there are very few results identifying the class of initial data that can be insensitized. This is a delicate issue which is related to the fact that insensitization turns out to be equivalent to suitable observability estimates for a coupled system of heat equations, one being forward and the other one backward in time. The existing Carleman inequalities techniques can be applied but they only give interior information of the solutions, which hardly allows identifying the initial data because of the strong irreversibility of the equations involved in the system, one of them being an obstruction at the initial time t = 0 and the other one at the final one t = T. In this article we consider different geometric configurations in which the subdomains to be insensitized and the one in which the external control acts play a key role. We show that, under rather restrictive geometric restrictions, initial data in a class that can be characterized in terms of a summability condition of their Fourier coefficients with suitable weights, can be insensitized. But, the main result of the paper, which might seem surprising, shows that this fails to be true in general, so that even the first eigenfunction of the system can not be insensitized. This result is similar to those obtained in the context of the null controllability of the heat equation in unbounded domains in[14] where it is shown that smooth and compactly supported initial data may not be controlled. Our proofs combine the existing observability results for heat equations obtained by means of Carleman inequalities, energy and gaussian estimates and Fourier expansions.
dc.formatapplication/pdf
dc.languageeng
dc.publisherCommunications on Pure and Applied Analysis
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subjectHeat equation
dc.subjectInsensitizing controls
dc.titleIdentification of the class of initial data for the insensitizing control of the heat equation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.3934/cpaa.2009.8.457
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-57149085493&doi=10.3934%2fcpaa.2009.8.457&partnerID=40&md5=f4f71b0c1f9150061ceeee31cf382989


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess