Show simple item record

dc.contributor.authorFulger, D.
dc.contributor.authorScalas, E. 
dc.contributor.authorGermano, G.
dc.description.abstractThe speed of many one-line transformation methods for the production of, for example, Lévy alpha-stable random numbers, which generalize Gaussian ones, and Mittag-Leffler random numbers, which generalize exponential ones, is very high and satisfactory for most purposes. However, fast rejection techniques like the ziggurat by Marsaglia and Tsang promise a significant speed-up for the class of decreasing probability densities, if it is possible to complement them with a method that samples the tails of the infinite support. This requires the fast generation of random numbers greater or smaller than a certain value. We present a method to achieve this, and also to generate random numbers within any arbitrary interval. We demonstrate the method showing the properties of the transformation maps of the above mentioned distributions as examples of stable and geometric stable random numbers used for the stochastic solution of the space-time fractional diffusion equation.
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.subjectα-stable distribution
dc.subjectfractional diffusion
dc.subjectMittag-Leffler distribution
dc.subjectRandom number generation
dc.titleRandom numbers from the tails of probability distributions using the transformation method
dc.journal.titleFractional Calculus and Applied Analysisen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España