dc.contributor.author | Katzourakis, N.I. | |
dc.date.accessioned | 2017-02-21T08:18:18Z | |
dc.date.available | 2017-02-21T08:18:18Z | |
dc.date.issued | 2013-12-31 | |
dc.identifier.issn | 1631-073X | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/536 | |
dc.description.abstract | Given a map u:Ω⊆Rn→RN, the ∞-Laplacian is the system:(1)δ∞u:=(Du⊗Du+|Du|2[Du]⊥⊗I):D2u=0 and arises as the "Euler-Lagrange PDE" of the supremal functional E∞(u,Ω)={norm of matrix}Du{norm of matrix}L∞(Ω). (1) is the model PDE of the vector-valued Calculus of Variations in L∞ and first appeared in the author's recent work [10-14]. Solutions to (1) present a natural phase separation with qualitatively different behaviour on each phase. Moreover, on the interfaces the coefficients of (1) are discontinuous. Herein we construct new explicit smooth solutions for n=N=2, for which the interfaces have triple junctions and non-smooth corners. The high complexity of these solutions provides further understanding of the PDE (1) and limits what might be true in future regularity considerations of the interfaces. | |
dc.format | application/pdf | |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | Explicit 2D ∞-harmonic maps whose interfaces have junctions and corners | |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1016/j.crma.2013.07.028 | |
dc.relation.publisherversion | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887220553&doi=10.1016%2fj.crma.2013.07.028&partnerID=40&md5=ffd7d7e0c21838eea207462e2f76d0bc | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |
dc.journal.title | Comptes Rendus Mathematique | en_US |