Show simple item record

dc.contributor.authorHaspot, B.
dc.date.accessioned2017-02-21T08:18:20Z
dc.date.available2017-02-21T08:18:20Z
dc.date.issued2012-12-31
dc.identifier.issn1674-7283
dc.identifier.urihttp://hdl.handle.net/20.500.11824/572
dc.description.abstractThis paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ≥ 2. We address the question of well-posedness for large data having critical Besov regularity. Our result improves the analysis of Danchin and of the author inasmuch as we may take initial density in B N/p p,1 with 1 ≤ p < +∞. Our result relies on a new a priori estimate for the velocity, where we introduce a new unknown called effective velocity to weaken one of the couplings between the density and the velocity. In particular, our result is the first in which we obtain uniqueness without imposing hypothesis on the gradient of the density.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectfluid mechanics
dc.subjectharmonic analysis
dc.subjectpartial differential equation
dc.titleExistence of strong solutions in critical spaces for barotropic viscous fluids in larger spaces
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1007/s11425-012-4360-8
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84856722537&doi=10.1007%2fs11425-012-4360-8&partnerID=40&md5=83fd79576e3812cebe67fdfdf9bef20b
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleScience China Mathematicsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España