Show simple item record

dc.contributor.authorIgnat, L.I.
dc.date.accessioned2017-02-21T08:18:21Z
dc.date.available2017-02-21T08:18:21Z
dc.date.issued2011-12-31
dc.identifier.issn0022-0396
dc.identifier.urihttp://hdl.handle.net/20.500.11824/591
dc.description.abstractWe introduce a splitting method for the semilinear Schrödinger equation and prove its convergence for those nonlinearities which can be handled by the classical well-posedness L2(Rd)-theory. More precisely, we prove that the scheme is of first order in the L2(Rd)-norm for H2(Rd)-initial data.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectError analysis
dc.subjectSemilinear Schrödinger equation
dc.subjectSplit-step method
dc.subjectStability
dc.titleA splitting method for the nonlinear Schrödinger equation
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1016/j.jde.2011.01.028
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-79951510767&doi=10.1016%2fj.jde.2011.01.028&partnerID=40&md5=dacb5a931cb81d4a7ed64d99d3667b38
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleJournal of Differential Equationsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España