Show simple item record

dc.contributor.authorFaragó, I.
dc.contributor.authorKarátson, J.
dc.contributor.authorKorotov, S.
dc.date.accessioned2017-02-21T08:19:30Z
dc.date.available2017-02-21T08:19:30Z
dc.date.issued2013-12-31
dc.identifier.issn0378-4754
dc.identifier.urihttp://hdl.handle.net/20.500.11824/642
dc.description.abstractDiscrete nonnegativity principles are established for finite element approximations of nonlinear parabolic PDE systems with mixed boundary conditions. Previous results of the authors are extended such that diagonal dominance (or essentially monotonicity) of the nonlinear coupling can be relaxed, allowing to include much more general situations in suitable models.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectAcute simplicial meshes
dc.subjectDiscrete maximum principle
dc.subjectFinite element method
dc.subjectNonlinear parabolic system
dc.titleDiscrete nonnegativity for nonlinear cooperative parabolic PDE systems with non-monotone couplingen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1016/j.matcom.2016.03.015
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84995377850&doi=10.1016%2fj.matcom.2016.03.015&partnerID=40&md5=c5c913bcd634da846e4bedad099aeedc
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleMathematics and Computers in Simulationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España