Show simple item record

dc.contributor.authorFaragó I.
dc.contributor.authorKarátson J.
dc.contributor.authorKorotov S.
dc.date.accessioned2017-02-21T08:19:30Z
dc.date.available2017-02-21T08:19:30Z
dc.date.issued2013-12-31
dc.identifier.issn0378-4754
dc.identifier.urihttp://hdl.handle.net/20.500.11824/642
dc.description.abstractDiscrete nonnegativity principles are established for finite element approximations of nonlinear parabolic PDE systems with mixed boundary conditions. Previous results of the authors are extended such that diagonal dominance (or essentially monotonicity) of the nonlinear coupling can be relaxed, allowing to include much more general situations in suitable models. © 2016 International Association for Mathematics and Computers in Simulation (IMACS).
dc.formatapplication/pdf
dc.languageeng
dc.publisherMathematics and Computers in Simulation
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subjectAcute simplicial meshes
dc.subjectDiscrete maximum principle
dc.subjectFinite element method
dc.subjectNonlinear parabolic system
dc.titleDiscrete nonnegativity for nonlinear cooperative parabolic PDE systems with non-monotone coupling
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.matcom.2016.03.015
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84995377850&doi=10.1016%2fj.matcom.2016.03.015&partnerID=40&md5=c5c913bcd634da846e4bedad099aeedc


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess