Show simple item record

dc.contributor.authorCastelli, R.
dc.contributor.authorPaparella, F.
dc.contributor.authorPortaluri, A.
dc.date.accessioned2017-02-21T08:19:30Z
dc.date.available2017-02-21T08:19:30Z
dc.date.issued2013-12-31
dc.identifier.issn1021-9722
dc.identifier.urihttp://hdl.handle.net/20.500.11824/643
dc.description.abstractWe give a detailed analytical description of the global dynamics of a point mass moving on a sphere under the action of a logarithmic potential. We perform a McGehee-type blow-up in order to cope with the singularity of the potential when the point mass goes through the singularity. In addition we investigate the rest-points of the flow, the invariant (stable and unstable) manifolds and we give a complete dynamical description of the motion.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectHeteroclinics
dc.subjectMcGehee coordinates
dc.subjectRegularization of collisions
dc.subjectSingular dynamics
dc.titleSingular dynamics under a weak potential on a sphereen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.identifier.doi10.1007/s00030-012-0182-1
dc.relation.publisherversionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84878400845&doi=10.1007%2fs00030-012-0182-1&partnerID=40&md5=8a4e756dc0903ce059a1fdf3a2bd346f
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleNonlinear Differential Equations and Applicationsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España