dc.contributor.author | Castelli, R. | |
dc.contributor.author | Paparella, F. | |
dc.contributor.author | Portaluri, A. | |
dc.date.accessioned | 2017-02-21T08:19:30Z | |
dc.date.available | 2017-02-21T08:19:30Z | |
dc.date.issued | 2013-12-31 | |
dc.identifier.issn | 1021-9722 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/643 | |
dc.description.abstract | We give a detailed analytical description of the global dynamics of a point mass moving on a sphere under the action of a logarithmic potential. We perform a McGehee-type blow-up in order to cope with the singularity of the potential when the point mass goes through the singularity. In addition we investigate the rest-points of the flow, the invariant (stable and unstable) manifolds and we give a complete dynamical description of the motion. | |
dc.format | application/pdf | |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Heteroclinics | |
dc.subject | McGehee coordinates | |
dc.subject | Regularization of collisions | |
dc.subject | Singular dynamics | |
dc.title | Singular dynamics under a weak potential on a sphere | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.identifier.doi | 10.1007/s00030-012-0182-1 | |
dc.relation.publisherversion | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878400845&doi=10.1007%2fs00030-012-0182-1&partnerID=40&md5=8a4e756dc0903ce059a1fdf3a2bd346f | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |
dc.journal.title | Nonlinear Differential Equations and Applications | en_US |