dc.contributor.author | Fernández Bertolin, A. | |
dc.contributor.author | Vega, L. | |
dc.date.accessioned | 2017-03-28T09:06:41Z | |
dc.date.available | 2017-03-28T09:06:41Z | |
dc.date.issued | 2017-03-25 | |
dc.identifier.issn | 0022-1236 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/655 | |
dc.description.abstract | Using Carleman estimates, we give a lower bound for solutions to the discrete Schrödinger equation in both dynamic and stationary settings that allows us to prove uniqueness results, under some assumptions on the decay of the solutions. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Discrete Hardy uncertainty principle | en_US |
dc.subject | Carleman estimates | en_US |
dc.subject | Unique continuation | en_US |
dc.title | Uniqueness properties for discrete equations and Carleman estimates | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.arxiv | 1509.08545 | |
dc.identifier.doi | 10.1016/j.jfa.2017.03.006 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | ES/1PE/MTM2014-53145-P | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Journal of Functional Analysis | en_US |