Show simple item record

dc.contributor.authorCaro, P.
dc.contributor.authorRogers, K.M.
dc.date.accessioned2017-03-30T07:06:04Z
dc.date.available2017-03-30T07:06:04Z
dc.date.issued2016-01-01
dc.identifier.issn2050-5086
dc.identifier.urihttp://hdl.handle.net/20.500.11824/656
dc.description.abstractWe prove uniqueness for the Calderón problem with Lipschitz conductivities in higher dimensions. Combined with the recent work of Haberman, who treated the three- and four-dimensional cases, this confirms a conjecture of Uhlmann. Our proof builds on the work of Sylvester and Uhlmann, Brown, and Haberman and Tataru who proved uniqueness for $C^1$-conductivities and Lipschitz conductivities sufficiently close to the identity.en_US
dc.description.sponsorshipSEV-2011-0087, SEV-2015-0554, ERC 277778, MTM2013-41780-Pen_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleGlobal Uniqueness for The Calderón Problem with Lipschitz Conductivitiesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1017/fmp.2015.9
dc.relation.publisherversionhttps://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/div-classtitleglobal-uniqueness-for-the-calderon-problem-with-lipschitz-conductivitiesdiv/4902D4F212E7D93D8C19A0D53A0F3541en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleForum of Mathematics, Pien_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España