dc.contributor.author | Caro, P. | |
dc.contributor.author | Helin, T. | |
dc.contributor.author | Lassas, M. | |
dc.date.accessioned | 2017-03-30T07:57:46Z | |
dc.date.available | 2017-03-30T07:57:46Z | |
dc.date.issued | 2016-05 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/657 | |
dc.description.abstract | In this paper we consider an inverse problem for the $n$-dimensional random Schrödinger equation $(\Delta-q+k^2)u = 0$.
We study the scattering of plane waves in the presence of a potential $q$ which is assumed to be a Gaussian random function such that its covariance is described by a pseudodifferential operator.
Our main result is as follows: given the backscattered far field, obtained from a single realization of the random potential $q$, we uniquely determine the principal symbol of the covariance operator of $q$. Especially, for $n=3$ this result is obtained for the full non-linear inverse backscattering problem.
Finally, we present a physical scaling regime where the method is of practical importance. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | Inverse scattering for a random potential | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | ES/1PE/MTM2015-69992-R | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | en_US |