Show simple item record

dc.contributor.authorCaro, P.
dc.contributor.authorHelin, T.
dc.contributor.authorLassas, M.
dc.date.accessioned2017-03-30T07:57:46Z
dc.date.available2017-03-30T07:57:46Z
dc.date.issued2016-05
dc.identifier.urihttp://hdl.handle.net/20.500.11824/657
dc.description.abstractIn this paper we consider an inverse problem for the $n$-dimensional random Schrödinger equation $(\Delta-q+k^2)u = 0$. We study the scattering of plane waves in the presence of a potential $q$ which is assumed to be a Gaussian random function such that its covariance is described by a pseudodifferential operator. Our main result is as follows: given the backscattered far field, obtained from a single realization of the random potential $q$, we uniquely determine the principal symbol of the covariance operator of $q$. Especially, for $n=3$ this result is obtained for the full non-linear inverse backscattering problem. Finally, we present a physical scaling regime where the method is of practical importance.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleInverse scattering for a random potentialen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDES/1PE/MTM2015-69992-Ren_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España