Show simple item record

dc.contributor.authorBiswas, I.
dc.contributor.authorDan, A.
dc.contributor.authorPaul, A.
dc.date.accessioned2017-04-24T10:55:47Z
dc.date.available2017-04-24T10:55:47Z
dc.date.issued2017-04-01
dc.identifier.issn0025-2611
dc.identifier.urihttp://hdl.handle.net/20.500.11824/667
dc.description.abstractA theorem of Weil and Atiyah says that a holomorphic vector bundle $E$ on a compact Riemann surface $X$ admits a holomorphic connection if and only if the degree of every direct summand of $E$ is zero. Fix a finite subset $S$ of $X$, and fix an endomorphism $A(x)\, \in\, \text{End}(E_x)$ for every $x\, \in\, S$. It is natural to ask when there is a logarithmic connection on $E$ singular over $S$ with residue $A(x)$ at every $x\, \in\, S$. We give a necessary and sufficient condition for it under the assumption that the residues $A(x)$ are rigid.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectLogarithmic connectionen_US
dc.subjectresidueen_US
dc.subjectrigidityen_US
dc.subjectlogarithmic Atiyah bundleen_US
dc.titleSurrogate-based uncertainty and sensitivity analysis for bacterial invasion in multi-species biofilm modelingen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1007/s00229-017-0935-6
dc.relation.publisherversionhttp://link.springer.com/article/10.1007/s00229-017-0935-6en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/615655en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleManucripta Mathematicaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España