Show simple item record

dc.contributor.authorBiswas, I.
dc.contributor.authorDan, A.
dc.contributor.authorPaul, A.
dc.contributor.authorSaha, A.
dc.date.accessioned2017-05-03T05:20:53Z
dc.date.available2017-05-03T05:20:53Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.11824/670
dc.description.abstractLet $E_G$ be a holomorphic principal $G$--bundle on a compact connected Riemann surface $X$, where $G$ is a connected reductive complex affine algebraic group. Fix a finite subset $D\, \subset\, X$, and for each $x\,\in\, D$ fix $w_x\, \in\, \text{ad}(E_G)_x$. Let $T$ be a maximal torus in the group of all holomorphic automorphisms of $E_G$. We give a necessary and sufficient condition for the existence of a $T$--invariant logarithmic connection on $E_G$ singular over $D$ such that the residue over each $x\, \in\, D$ is $w_x$. We also give a necessary and sufficient condition for the existence of a logarithmic connection on $E_G$ singular over $D$ such that the residue over each $x\, \in\, D$ is $w_x$, under the assumption that each $w_x$ is $T$--rigid.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectLogarithmic connectionen_US
dc.subjectresidueen_US
dc.subjectautomorphismen_US
dc.subjectmaximal torien_US
dc.titleLogarithmic connections on principal bundles over a Riemann surfaceen_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.relation.publisherversionhttps://arxiv.org/abs/1705.00852en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/615655en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionen_US
dc.journal.titlearxiven_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España