dc.contributor.author | Biswas, I. | |
dc.contributor.author | Dan, A. | |
dc.contributor.author | Paul, A. | |
dc.contributor.author | Saha, A. | |
dc.date.accessioned | 2017-05-03T05:20:53Z | |
dc.date.available | 2017-05-03T05:20:53Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/670 | |
dc.description.abstract | Let $E_G$ be a holomorphic principal $G$--bundle on a compact connected Riemann surface $X$, where $G$ is a connected reductive complex affine algebraic group. Fix a finite subset $D\, \subset\, X$, and for each $x\,\in\, D$ fix $w_x\, \in\,
\text{ad}(E_G)_x$. Let $T$ be a maximal torus in the group of all holomorphic automorphisms of $E_G$. We give a necessary and sufficient condition for the existence of a $T$--invariant logarithmic connection on $E_G$ singular over $D$ such that the
residue over each $x\, \in\, D$ is $w_x$. We also give a necessary and sufficient condition for the existence of a logarithmic connection on $E_G$ singular over $D$ such that the residue over each $x\, \in\, D$ is $w_x$, under the assumption that
each $w_x$ is $T$--rigid. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Logarithmic connection | en_US |
dc.subject | residue | en_US |
dc.subject | automorphism | en_US |
dc.subject | maximal tori | en_US |
dc.title | Logarithmic connections on principal bundles over a Riemann surface | en_US |
dc.type | info:eu-repo/semantics/doctoralThesis | en_US |
dc.relation.publisherversion | https://arxiv.org/abs/1705.00852 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/615655 | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | en_US |
dc.journal.title | arxiv | en_US |